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ABSTRACT

Void nucleation and growth under dynamic loading are essential for damage initiation and evolution in ductile metals. In the past few decades, the
development of experimental techniques and simulation methods has helped to reveal a wealth of information about the nucleation and growth
process from its microscopic aspects to macroscopic ones. Powerful and effective theoretical approaches have been developed based on this
information and have helped in the analysis of the damage states of structures, thereby making an important contribution to the design of damage-
resistant materials. This Review presents a brief overview of theoretical models related to the mechanisms of void nucleation and growth under
dynamic loading. Classical work and recent research progress are summarized, together with discussion of some aspects deserving further study.

© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0064557

I. INTRODUCTION

Thedevelopmentofmodern industryhasprompted theexploration
of material properties under extremely complex service conditions. For
materials ranging from traditional ones that have been used for centuries
to recently designed ones relying on new manufacturing technologies,
studies of performance under extreme service conditions provide an
indispensable basis for their applications in awidevarietyoffields, suchas
defense-related and astronautics industries,1–5 the nuclear industry,6–13

and nano-manufacturing.14,15 In this context, the mechanical responses
of ductile metals under high-strain-rate loading conditions are of great
interest, including their dynamic yielding behavior and dynamic fracture
process. The fundamentalmechanismgoverning the dynamic fracture of
ductile metals has been widely studied, especially in recent years, since it
not only provides a basis for further theoretical studies of themechanical
behavior of thesematerials, but is also very different from themechanism
of fracture in quasistatic conditions.

Spalling is one of the most important dynamic fracture modes in
metals, and observations of spalling using relatively simple experimental
methods can reveal fundamental mechanical aspects of the dynamic
fracture process.1 The spalling process can be described as follows. A

sufficiently energetic strike resulting from plate impact, explosive det-
onation, or laser shock will first produce shock compression pulses,
which are then transformed into rarefaction waves after free-surface
reflection. The interference between these rarefaction waves produces a
state of high tensile stress in the target, causing planar separation of
material. Spalling in brittle metals is characterized by cracks with sharp
tips aroundwhich little plastic deformation takesplace,whereas inductile
metals, it is characterized by voids that tend to be spherical up to a certain
size.1 From a microscopic point of view, the spalling in ductile metals
results from nucleation, growth, and coalescence of these voids.16 In the
past few decades, an abundance of experimental and computational
studieshavehelped to reveal awealthof informationabout thenucleation
and growth process frommicroscopic tomacroscopic aspects.1–4 On the
onehand, these studieshaveprovided increasingly clearphysical pictures,
on the basis of which we have come to understand the underlying
mechanism of the damage initiation process and describe this process in
precise mathematical terms. On the other hand, the development of
experimental and simulation techniques in thisfieldhas led to aneed for a
powerful and effective theory to describe current observations and to
provide a reliable reference for further investigations. For instance, a
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theoretical model that could accurately predict the critical nucleation
stress would be very helpful if the appropriate velocity of the flyer needed
to be set in a plane impact experiment to cause only incipient damage to
the target. To sum up, the study of theoretical models helps to reveal the
mechanism of void nucleation and growth under dynamic loading and
makes an important contribution to the design of damage-resistant
materials. Therefore, in this review, we summarize classical work and
recent research progress on theoretical models related to void nucleation
and growth under dynamic loading.

The remainder of the paper is organized as follows. In Secs. II
and III, theoretical works on void nucleation and growth, respectively,
are introduced, with the former covering models of void nucleation
from common crystallographic defects and the latter dealing with
growthmodels based on classical and onnewly developed constitutive
relations. A summary and outlook are presented in Sec. IV.

II. MODEL OF VOID NUCLEATION

Since the stages of void nucleation and growth are usually
coupled with each other, the definition of nucleation remains con-
troversial among researchers owing to different perspectives that they
adopt. Specific definitions of void nucleation are basically of two types
(1) size-based and (2) process-based.

From a size-based perspective, Curran et al.17 defined the nu-
cleation of microscopic fracture as the appearance of microscopic
flaws (or voids) whose sizes are comparable to the size of the con-
tinuum limit of the material. However, this definition inevitably also
includes submicroscopic growth in the vast majority of cases. From a
process-based perspective, nucleation is defined as the creation of a
flaw (or a void) large enough to grow under an applied stress field.18,19

For nucleation occurring at the microscale, the above two
definitions are often equivalent to each other. For nucleation at the
nanoscale, however, a size-based definition may lead to an inaccurate
division of the stages involved. Although they recognized the theo-
retical attraction of the process-based definition, Curran et al.17 held
the view that the difficulty of applying continuum mechanics to
describe events at a scale much smaller than the continuum limit
hinders its adoption. This point of view was reasonable, considering
the experimental techniques available at that time, but subsequent
technical developments have made it somewhat outdated. Recently,
extensive experiments and simulations have focused on nanoscale
nucleation, and the abundant information that these have provided
has now revealed the physical mechanisms of nanoscale nucleation,
making it feasible to model some of these mechanisms in the
framework of continuum mechanics.20,21

In this section, we overview themicroscopicmechanisms of void
nucleation under dynamic loading, which can be classified into two
categories: heterogeneous and homogeneous nucleation.1,22 Het-
erogeneous nucleation usually occurs at micrometer-sized defect sites
such as grain boundaries, triple junctions, and second-phase particles.
Homogeneous nucleation, as suggested by previous studies,1,19,22

refers to the nucleation process originating at perfect lattice structures
or submicroscopic heterogeneities within grains. Besides the nucle-
ation mechanism, the size distribution and statistical evolution of the
nucleated voids are also important issues in this field. The associated
models are covered in previous comprehensive reviews3,23 and are not
discussed in this paper.

A. Models of heterogeneous void nucleation

Deformation around inclusions and second-phase particles is an
importantmechanism for void nucleation under dynamic loading. As
experimental evidence for this, Pedrazas et al.25 presented the strong
correlation between second-phase particles and the dimples produced
in spallation at very high strain rates [∼(2–4) 3 106 s−1], even for
commercially pure aluminum (99%). The nucleation mechanism of
inclusions and second-phase particles includes cracking of inclusions,
debonding at interfaces, and matrix fracture near inclusions.1,17

Models of void nucleation in material containing a dispersion of
inclusions or second-phase particles have been proposed in the past
few decades to predict the onset of damage initiation. For void nu-
cleation at the matrix–particle interface, there are two necessary
conditions for the void nucleation process, namely, the mechanical
debonding condition and the energetically favorable condition.17

Themechanical debonding condition of the nucleation process was
analyzed by Ashby24 based on a stress calculation, and it was found that
nucleation occurs when the tensile stress along the tensile axis (which
may result from the applied tensile stress along x′1 in Fig. 1 or the applied
compression stress along x′2) exceeds the assumed fracture stress, which
can be the normal fracture stress of the particle–matrix interface.
However, this condition itself is insufficient, since the energetically fa-
vorable condition is also essential for nucleation. Although the energy
expressions may be different from model to model, the core of this
condition canbe expressed as saying that thework done should be no less
than the energy required to form the new surfaces of the void. In this
review, these two conditions are referred to more concisely as the “stress
condition” and the “energy condition,” as in previous studies.26,27 Two
typical models are introduced subsequently, which take both of these
conditions into account.

FIG. 1. Nucleation occurs at the matrix–particle interface owing to tensile stress.24

Matter Radiat. Extremes 7, 018201 (2022); doi: 10.1063/5.0064557 7, 018201-2

©Author(s) 2021

Matter and
Radiation at Extremes REVIEW scitation.org/journal/mre

https://doi.org/10.1063/5.0064557
https://scitation.org/journal/mre


Tanaka et al.26 analyzed the critical strains that satisfy the stress
condition and the energy condition, respectively. The critical strain
that corresponds to the stress condition26 PI

33 ≥ σs was obtained as

εc ≥
δ, α< 1,

δ

��
1
α

√
, α≥ 1,

⎧⎪⎪⎨⎪⎪⎩ (1)

where

δ �
�����������������������������
(7− 5])(1 + ]∗) + (1 + ])(8− 10])α

10(7− 5])

√
. (2)

Here, α � E∗/E, where E∗ and E are the Young’smoduli of the particle
and the matrix, respectively. ]∗ and ] are the Poisson’s ratios of the
particle and the matrix, respectively. σs is the interface strength and
takes a value of σs � max{α, 1} · E/10 in their work. From a energetic
perspective, Tanaka et al.26 calculated the total energy of the specimen
based on calculation of the strain energy in and around a spherical
particle. The energy condition is therefore expressed asG1≥G2, where
G denotes the total energy of the specimen, with the subscripts 1 and 2
referring to the cases before and after nucleation, respectively. On this
basis, the critical strain is derived as

εc ≥
β

��
1
2r

√
, α< 1,

β

���
1
2rα

√
, α≥ 1,

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (3)

where

with l � 1 3 10−9 cm, so the unit of β is
���
cm

√
. r is the radius of the

spherical particle. Based on Eq. (3), the critical strain is inversely de-
pendent on the square root of the particle size. Combining the above two
conditions, Tanaka et al.26 concluded that the satisfaction of the ener-
getically favorable one, Eq. (3), is a sufficient and necessary condition for
voidnucleation at particles of radius smaller than10–15nm.Forparticles
of radius larger than 10–15 nm, the voidwill gradually grow, with further
plastic deformation and under control by the stress condition, Eq. (1).
However, Eq. (1) takes no account of the influence of particle size and
underestimates the critical strain required for large inclusions compared
with experimental results (Fig. 2).

Based on the deformation incompatibility between the hard par-
ticles and the matrix, a modified model was proposed from a different
perspective.27,32 The stress condition of themodel inGoods andBrown27

accounted for the influence of particle size through the work-hardening
effect of the inclusion. The local flow stress was derived as

σ l � κμb
��
ρl

√
, (5)

where ρl is the local dislocation density, μ is the shear modulus of the
matrix, b is the magnitude of the Burgers vector, and κ is a material

constant. The local dislocation density is related to the particle radius
and the plastic strain as

ρl �
5εp
3rb

. (6)

Considering the plastic constraint resulting from the particle, the
relation between the local stress at the interface σc and the local flow
stress σ l was determined by Brown and Stobbs32 as σc ≃ 4.2σ l.
Therefore, the critical strain can be derived as

εc ≥
1
30

σc
κμ

( )2
r

b
. (7)

According to Eq. (7), the critical strain increases with the particle size,
which is in keeping with the experimental results (Fig. 2). In the energy
conditionof theirmodel, the particle is assumed tobepurely elastic,while
the matrix material undergoes both elastic and plastic deformation. The
deformation incompatibility between the hard particles and thematrix is
defined as ε∗p. For situations where stress relaxation does not occur, ε

∗
p is

equal to the plastic strain εp. For situations where stress relaxation does
occur, Brown and Stobbs32 adopted the approximate form

ε∗p �
���
bεp
r

√
. (8)

The energy condition states that void nucleation occurs onlywhen the
energy released by the separation between the particle and the matrix
is no less than the energy needed to form the new surface. The energy
condition in Brown and Stobbs32 is expressed as

ΔEelas + ΔEs < 0, (9)

where ΔEelas � − 4
3 πμ

∗r3ε∗2p and ΔEs � 4πr2γ, with μ∗ being the shear
modulus of the particle and γ the surface energy. Based onEqs. (7) and
(9), Brown and Stobbs32 concluded that the energy condition is always
satisfied before the stress condition, except for very small particles.
This conclusion is in keeping with that obtained by Tanaka et al.26

However, Eq. (9)means that nucleation needs separation of the whole
surface of the particle. This kind of setting results in an overestimate of
the required energy, and consequently an overestimate of the critical
strain compared with the experimental results. An approximate
correction was proposed by reconsidering the proportion of the
particle–matrix interface that separated during the nucleation pro-
cess.27 In the improved version of the model, the separation of the
particle–matrix interface was assumed to occur only at the particle
poles in the direction of the maximum tensile stress, as shown in
Fig. 3. This assumption had already been adopted in previous the-
oretical work24,26 and verified by experiments.26

In summary, there are two necessary conditions for void nu-
cleation at inclusions, namely, the mechanical debonding condition
and the energetically favorable condition. The dependence on particle
size varies from r−1/2 through no dependence to r owing to the

β �
����������������������������������������������������������
l
48[(7− 5])(1 + ]*) + (1 + ])(8− 10])α][(7− 5])(1− ]*) + 5(1− ]2)α]

(7− 5])2[2(1− 2]*) + (1 + ])α]

√
, (4)
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different assumptions adopted in the models. It is worth mentioning
that although the above models are based on quasistatic analyses, the
feasibility of applying them to the dynamic loading condition has
been proved.17

Besides inclusions and second-phase particles, grain boundaries
are also important heterogeneous nucleation sites. For void nucle-
ation on the grain boundary, only the energetically favorable con-
dition needs to be satisfied, i.e., the external work done on an element
containing a virtually growing void must exceed the energy required
to create the surface of the new void.17,18 The critical condition is
expressed as

σm dv> γ da, (10)

where σm is the mean tensile stress, γ is the surface energy, and dv and
da are the increases in void volume and void area, respectively. For a

spherical void, the critical condition can be derived according to
Eq. (10) as

rc � 2γ
σm

. (11)

Equation (11) reveals that the size of the nucleated void and the
external loading are closely related to each other. The minimum size
of a void that can spontaneously grow during the current loading can
be obtained according to Eq. (11), and vice versa. Equation (10)
provides a simple but basic way to represent the energy relation for
void nucleation on a grain boundary. The influence of other factors
such as void shape and dislocation pile-up has also been considered
on the basis of the original energy relation, Eq. (10).18,33,34 However,
some important properties of the grain boundary void nucleation
revealed by experiments and simulations under dynamic loading
conditions cannot be explained by Eq. (10), such as the influence of
the misorientation angle35–40 and the loading direction.41 Theoretical
models that can precisely describe the dynamic response of the grain
boundary are urgently required.

B. Models of homogeneous void nucleation

In contrast to alloys and high-purity polycrystalline metals, few
pre-existing nucleation sites are available for high-purity monocrys-
tallinemetals under high-strain-rate loading.Dislocation networks and
vacancy clusters generated during the deformation process serve as
potential nucleation sites for the homogeneous nucleation process in
this kind of material. In this section, models related to the vacancy-
mediated nanovoid nucleation mechanism are introduced in detail.

The void nucleation stage begins after the shock wave has
propagated in the interior of the sample. Vacancy clusters generated
by diffusion-mediated aggregation are potential nucleation sites that
may finally evolve into macroscopic voids and lead to fracture. As
suggested by Reina et al.,19 the “already nucleated” state of a potential
nucleation site corresponds to the onset of plastic cavitation, i.e., the
formation of vacancy clusters of a size such that subsequent growth
can happen by plasticity. Therefore, the triggering of plastic cavitation
can be regarded as the criterion for void nucleation.19 It should be
emphasized that the emission of dislocation loops is themechanismof
plastic cavitation under high-strain-rate loading, which is different
from the quasistatic case and has been confirmed by experiments and
simulations.42–49 In the case of quasistatic loading, plastic cavitation
can occur by a vacancy-diffusion-based mechanism, i.e., vacancy
condensation under an external stress field or elevated tempera-
ture.23,50 However, the time available for vacancy diffusion under
shock loading is very limited and is far less than the time required for a
diffusion-based cavitation mechanism.20,51 Previous studies have
focused on the external stress required to trigger dislocation emission
on void surfaces in the interior of ductile metals. The so-called critical
emission stress has been simulated in different metals and under
different loading conditions.43,46–49 Theoretical models have also
been proposed to analyze the emission process and derive a stress-
based emission criterion.

Two-dimensional (2D) elasticity theory is adopted to develop
the emission criteria from scratch. An explicit expression for the
critical emission stress was first proposed by Lubarda et al.20 The first
step in establishing the emission criterion is to derive the total glide
force actingon the dislocation. This is obtained as

FIG. 3. Schematic of void nucleation at a particle. Separation occurs at the poles of
the particle.27

FIG. 2. Critical strain of void nucleation at particles.27–31
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F(ξ) � �
2

√
σb

ξ

ξ2 + 1
2( )2 − μb2

πa(1− ])
ξ ξ4 + 1

4( )
ξ2 + 1

2( )2 ξ4 − 1
4( ), (12)

where μ is the shearmodulus, ] is Poisson’s ratio, a is the void radius, b
is the magnitude of the Burgers vector, and ξ � x/a is the position of
the dislocation. Considering the existence of an unstable equilibrium
position of the dislocation when σ takes the values achieved in shock
loading experiments (∼GPa), it is assumed that dislocation emission
from the void surface will be triggered if the equilibrium distance of
the dislocation from the void surface is equal to the dislocation core
cutoff radius. Thus, the criterion is derived as

σcr � μb/a�
2

√
π(1− ])

1 + �
2

√
w/a( )4 + 1

1 + �
2

√
w/a( )4 − 1, (13)

where w is the dislocation core cutoff radius, which is a measure of the
width of the dislocation. This criterion is based on the 2D configuration
where an edge dislocation is emitted from an infinitely extended cy-
lindrical void in an infinite isotropicmedium(Fig. 4).The influenceof the
void radius and the dislocation width, as well as the dislocation inter-
action, was also investigated in thework of Lubarda et al.20 The larger the
void radius and the wider the dislocation core, the smaller is the critical
nucleation stress, as shown in Fig. 5. Besides, the interaction between
dislocations impedes the emission of the dislocation and result in higher
value of the critical emission stress comparedwith the situationwhere the
dislocation interaction is neglected.

However, there are several drawbacks in their model. First, it as-
sumes that the dislocation is emitted from the void surface along the
direction of themaximum shear stress under biaxial equal tension.20 The
emission direction (i.e., the rotation angle of the slip plane relative to the
radial direction) is not taken as variable. Therefore, their model cannot
account for the finite number of slip systems available in real materials,
which limits its range of application. Second, effects resulting from the
existence of other voids cannot be investigated. The void in theirmodel is

assumed to be in an ideal elasticmedium, whereas actual void nucleation
and growth process take place in solids with dispersed voids.

A revised dislocation emission model taking account of the
emission direction was proposed by Lubarda.52 Two related sets of
polar coordinates (ρ, θ) and (r, φ) were adopted to locate the position
of the dislocation relative to a point on the void surface and the center
of the void, respectively. The total glide force under biaxial equal
tension was derived as

F � σb
a2

r2
sin 2(θ −φ)

+ μb2 cos(θ −φ)
2π(1− ])

a2

r3
2
r2 − a2

r2
sin2 θ −

r2

a2
r2

r2 − a2
( ). (14)

FIG. 4. (a) 2D configuration of dislocation emission. (b) Stress state at the point of dislocation due to equal biaxial tension σ .20

FIG. 5. Normalized critical emission stress vs normalized radius of void. The three
curves represent three different dislocation widths: w � b, w � 1.5b, and w � 2b.20
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Using the condition for emission proposed by Lubarda et al.,20 the
critical emission stress is derived as

σcr � μb/a
4π(1− ])

r20
a2

1
f0

− 2f0( ), (15)

where

r20 � a2 + w2 + 2aw cos θ, f0 � r20 − a2

r20
sin θ. (16)

The angle θcr specifies the emission direction in Lubarda’s revised
model, which corresponds to the minimum of the far-field applied
stress,52 i.e.,

zσcr
zθ

∣∣∣∣∣∣∣θ�θcr � 0. (17)

Besides taking account of the emission direction, Lubarda52 also
extended themodel to incorporate a general biaxial loading condition
and analyzed dislocation emission under several typical biaxial
loading conditions. It was found that remote pure shear loading
requires a lower value of the critical emission stress comparedwith the
equal biaxial loading condition and the uniaxial loading condition.
The stress concentration at the void surface is considered to be the
factor underlying this phenomenon.

To consider the influence of other voids, a criterion for dislo-
cation emission in porous solids was proposed by Wilkerson and
Ramesh.21 In their work, an auxiliary problem that is simple enough
for closed-form solutions to be derived was constructed from the
original one. The dislocation emission from a spherical void in a
porous material under a general 3D macroscopic stress state was
simplified to a 2D problem in which dislocation emission from an
infinitely extended cylindrical void occurs in an infinite isotropic
linear-elastic medium. Dislocation emission was proved to occur
more easily with increasing porosity in their model.

The 2D criteria lay the foundation for a theoretical description of
dislocation emission. However, these models based on a 2D configu-
ration introduce an excess of assumptions. These assumptions help in the
derivation of closed-form solutions that are as simple as possible, but they
also leave out some important information. First, the real physical process
of dislocation emission, namely, the emission of 3D dislocation
loops,43,54–59 is overly simplified in 2D configurations. Second, the in-
fluence of some important factors in the actual 3D process, such as the
actual porosity or the actual stress triaxiality, cannot be investigated
directly in 2D configurations. Owing to the dimensionality reduction,
further hypotheses must be introduced in 2D models. For example, the
original 3D macroscopic stress is approximated as an effective 2D stress
state,21 while dispersed spherical voids are approximated as arrays of
cylindrical voids to derive an effective porosity.21

Pioneering work on the mechanical description of 3D dislocation
loops was done by Willis and Bullough,60 who analyzed the interaction
between a spherical void and a circular interstitial dislocation loop using
spherical harmonics. On this basis, Ahn et al.61,62 proposed the concept
of a threshold applied stress for the emissionof prismatic dislocation loop
(PDL) in an ideal elasticmaterial underhydrostatic loading.However, the
accuracy of theirmodel is limited by the hypotheses required and the use
of artificially introduced parameters. Besides, some important factors
were not been included in theirmodel, such as emission position, porous
softening, and stress triaxiality.

Recently, a 3D criterion in porous media has been proposed to
determine the critical emission stressof aPDL,σcr, and thecorresponding
emission angle θcr specifying the emission position on the spherical void
surface,53 as illustrated in Fig. 6. Based on this model, Sui et al.53 sys-
tematically studied the factors influencing PDL emission in a 3D con-
figuration, such as the geometric parameters, the stress triaxiality, and the
porosity. The criterion for dislocation was derived as

−
1 + 2η
2

cos 2θcr + (1− η) 3
7− 5]

(sin4θcr − 3 sin2θcr cos
2θcr)[

−3 cos 2θcr] + 3γ
aσcr

cos 2θcr � 0, (18a)

τimage
g (r0, θ0) + τexternalg (r0, θ0, σcr, f) + τsurfaceg (r0, θ0)

+τf rictiong � 0, (18b)

where a is the void radius, γ is the surface energy, η is the loading
parameter, f is the porosity, τg is the glide shear stress on the glide
cylinder, and the superscripts “image,” “external,” “surface,” and
“friction” refer to the image stress field, the remote stress field, the
surface energy, and the lattice fraction, respectively. Other variables in
Eq. (18) are introduced in Fig. 6. It is revealed that the critical emission
stress for a PDLdecreases with the dislocationwidth and the void size.
Emission of a PDL emission from a void in a porous medium will be
facilitated by the nucleation and growth of other PDLs, since they
result in an increase in porosity (Fig. 7). The above conclusions are in
keeping with those obtained from 2Dmodels. In addition, the critical
emission stress is notably affected by the stress triaxiality (Fig. 8).
When the loading state varies from uniaxial tension (i.e., η � 0 in
Fig. 8) to hydrostatic tension (i.e., η � 1) with increasing stress tri-
axiality, the critical emission stress decreases significantly.

FIG. 6. 3D configuration of dislocation emission. Variables with subscript 0 are geometric
parameters associated with the prismatic dislocation loop (PDL). z0 � a cos θcr + w is
the equilibrium position of the PDL, ρ0 � a sin θcr is the radius of the PDL, and
r0 �

��������
z02 + ρ0

2
√

and θ0 � arctan(ρ0/z0) specify the position of the PDL.
53
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III. MODELS OF VOID GROWTH

Void growth is vital for the evolution of ductile damage and
dramatically influences the service life and performance of materials.
In this section, phenomenological and physics-based growth models
are introduced. Phenomenological models adopt the traditional
constitutive relationships to describe the dynamic growth process of a
void, while physics-based models describe the same process by fo-
cusing on the laws governing the evolution of microstructures under
high-strain-rate loading conditions.

A. Phenomenological growth models

It is worth mentioning that quasistatic void growth models
provide the basis for the dynamic ones. The earliestmodels describing

the growth of isolated voids in ductilemetals under quasistatic loading
conditions were first developed in the last century.63–68 Since these
models cannot capture the important effect of an evolving void
volume fraction in actual situations, the micromechanics-based
Gurson model69 and its modifications were subsequently proposed
to consider the influence of void interactions. The development of
dynamic growth models is closely related to that of quasi-static
models. In this section, phenomenological dynamic growth models
are systematically introduced. We start from the dynamic growth of
an isolated void in an infinite medium as the basis for the following
models. Subsequently, statistically based models and
micromechanics-based models that describe the macroscopic me-
chanical response of the damaged material are introduced.

1. Dynamic growth model of isolated void

The dynamic growth of a single void in a power-law-hardening
unbounded solid was studied by Ortiz and Molinari,70 who sys-
tematically investigated the effects of inertia, strain hardening, and
rate dependence under conditions of high-strain-rate loading from an
energetic viewpoint. They assumed the matrix to be incompressible
and the void to remain spherical during the process of growth. Based
on the principle of conservation of energy, the evolution laws of the
void radius for both the rate-dependent [Eq. (19a)] and rate-
independent [Eq. (19b)] cases were derived as follows:

d

dt

3
2
ρ _a2

4πa3

3
( ) + σy _ε0

2
3εy

( )1/n

3
2 _a
_ε0a

( )(m+1)/m
f

a

a0
, m, n( ) 4πa3

3

� 3p
_a

a

4πa3

3
, (19a)

3
2
ρ _a2

4πa3

3
+ nσyεy
n + 1

2
3εy

( ) n+1( )/n
g

a

a0
, n( ) 4πa3

3
� p

a3 − a30
a3

4πa3

3
,

(19b)

where

f
a

a0
, m, n( ) � ∫∞

1
log

x

x− 1 + a30/a3( )[ ]1/nx−(m+1)/m dx, (20)

g
a

a0
, n( ) � ∫∞

1
log

x

x− 1 + a30/a3( )[ ](n+1)/n dx, (21)

ρ is the mass density, a is the void radius, a0 is the initial void radius,
and σy, εy, _ε0,m, and n are material constants (for details, see Ref. 70).
By considering the dimensionless forms of the evolution equations
(19), short- and long-term approximations of the original form are
derived by leaving out the insignificant time-related term to describe
the early and late stages of void growth. It is revealed that inertia,
strain hardening, and rate sensitivity all have a remarkable influence
on void evolution. To measure the effective inertia of the system, the
following parameter is defined:

D � ρa20
k

_ε2−1/mref , (22)

FIG. 8.Effect of stress triaxiality on dislocation emission. η� 0 and η� 1 correspond
to the cases of uniaxial tension and hydrostatic tension, respectively.53

FIG. 7. Effect of porosity f on dislocation emission. σcr/μ and a/b are the normalized
critical emission stress and the normalized radius of the void, respectively.53
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where k � σyε−1/ny _ε
−1/m
0 , and _εref is a reference strain rate that is chosen

according to the problem under consideration.70 The early stage of
void growth is dominated by viscous effects, whereas the late stage is
dominated by inertia. The role of inertia becomes significant only
when the void reaches a critical size that depends on both the me-
chanical properties and the rate of expansion. The rate sensitivity of
the material retards the expansion of the void for the short-term
solution in the work of Ortiz andMolinari,70 which is as expected. For
the long-term solution, however, the rate-dependent description of
thematerial results in faster void growth than in the rate-independent
situation, which is counterintuitive, since the one would expect the
rate sensitivity to influence the void growth in a consistent way.

Taking the influence of heat conduction into consideration, Wu
et al.71–73 proposed a thermal–mechanical coupling model to study
the dynamic growth of a single spherical void, with special attention
being paid to the comprehensive effect of inertia, thermal softening,
rate dependence, and plastic strain gradient. The evolution law of the
void in their work was derived as

p(t)− ∫2 ln(a/a0)

0

σe
exp(3ε/2)− 1 dε � ρ aa

.. + 3 _a2

2
( ), (23)

where p(t) is the applied far-field stress, ρ is the material density, a0 is
the initial size of the void, and σe is the von Mises equivalent stress.
Similar to Eq. (22), an inertial scaling factor was defined byWu et al.71

according to the dimensionless form of Eq. (23) to investigate the
influence of inertia, i.e.,

Iinertia � ρa20 _p
2

σyp2
s

, (24)

where _p is the loading rate, σy is the yield strength, and ps is the steady
value of the applied far-field stress. Compared with Eq. (22), Eq. (24)
decouples the influence of rate sensitivity and inertia and quantifies
the effect of inertia in amore direct way. It is found that inertial effects
are dependent on the loading rate and the initial size of the void. The
influence of inertia on void growth becomes more obvious for sit-
uations with a larger initial void and a higher loading rate. In addition,
Wu et al.71 also analyzed the influence of thermal conduction. The
constitutive relationship of thematrix, includes thermal softening and
strain hardening, was assumed to take the form

σe
σy

� f(ε)h(T∗), (25)

where f(ε) is the power-law strain hardening function. h(T∗) is the
thermal softening function, which was derived according to con-
servation of energy as

h(T∗) � exp −
cωσy

(n + 1)ρcp [εf(ε)− εy]{ }, (26)

where c is the thermal coefficient, cp is the specific heat at constant
pressure, andω is the fraction of plastic work transformed into heat. It is
found that the critical stress for unstable growth of the void is reduced by
thermal softening. By comparison, heat conduction makes a positive
contribution to the stable growth of the void, which is evidently affected
by the void size under dynamic loading conditions. The stabilizing in-
fluence of thermal conduction becomes remarkable for small voids
becauseof thehighheat transfer efficiency around them.The effect of rate

hardening, which appears to contribute in the opposite way in Ortiz and
Molinari,70 is also discussed by Wu et al.71,72 It is revealed that the rate
sensitivity reduces the growth rate of the void in the early stage of dy-
namic growth, while it has little effect in the late stage, since the rate-
hardening effect decreases with increasing void size.

2. Growth model coupled with statistical theory

The evolution law for an isolated void in an infinite plastic
matrix71 was adopted by Molinari and Wright74 to propose a sta-
tistical description of damage evolution. Equation (23) is rewritten as

p(t)−pc � ρ aa
.. + 3 _a2

2
( ), (27)

for the case of p(t) ≥ pc. The local critical nucleation stress for a
potential nucleation site is defined as

pc � lima/a0 →∞∫2 ln(a/a0)

0

σe
exp(3ε/2)− 1 dε

� 2
3
σy + ∫∞

εy

σe
exp(3ε/2)− 1 dε. (28)

The value of pc is well determined by the tensile yield stress σy, the
tensile yield strain εy, and the vonMises equivalent stress σe, since they
contain all the constitutive information of the local material around
the potential nucleation site. The fact that pc has the same value when
either a→∞ or a0→ 0 indicates that void nucleation (i.e., the initial
size of the void tending to zero) can be regarded as a bifurcation
(i.e., the void radius growing to infinity) in the homogeneous solu-
tion.74 Besides, Molinari and Wright74 proved that voids of all dif-
ferent sizes grow at the same equilibrium rate for a given applied stress
above the critical stress. Therefore, they ignored the initial sizes of the
voids (i.e., the initial porosity) in their work and assumed that all voids
in a local area nucleate at the local critical stress. Considering the
material heterogeneity due to microstructures, the local critical stress
varies form site to site. Molinari andWright74 introduced a statistical
theory to describe these variations. The probability density function of
pc, denoted by g(pc), is given according to the Weibull law or the
Gaussian law in their work. For instance, the probability density
function of pc based on the Weibull law can be expressed as

g(pc) � β2
β1

〈pc −p0c〉
β1

( )β2−1

exp −
〈pc −p0c〉

β1
( )β2⎡⎣ ⎤⎦, (29)

with the convention

〈x〉 � 1
2

x + x| |).(
β1 and β2 are statistical parameters, and p0c is the lower limit for
having a positive probability of void nucleation. When the loading
rate is a positive constant, i.e., p(t) � _pt, a simple similarity solution
of Eq. (27) can be derived as

a �
��
8
33

√ ��
_p

ρ

√ 〈t−pc

_p 〉3/2. (30)

It should be emphasized that potential nucleation sites are equivalent
if they have the same value of the critical nucleation stress. As a result,
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the relationship between the void volume generated per unit initial
volume Vvoid and the critical nucleation stress pc can be derived as

dVvoid

dpc
� 4
3
πa3Ng(pc), (31)

where N is the number of potential nucleation sites per unit volume.
Therefore, the porosity can be derived as

f � Vvoid

1 + Vvoid
, (32)

with

Vvoid � ∫
pc

4
3
πa3Ng(pc) dpc. (33)

On combining Eqs. (29) and (30) with Eqs. (32) and (33), the time
evolution of the porosity can be obtained. It is worth noting that the
probability density function g(pc) is the bridge between the micro-
scopic information and the macroscopic damage description. A
physical-based modeling of g(pc) will help to describe the damage
process as precisely as possible. However, the governing equation (27)
is for a configuration of an infinite body containing a single spherical
void and subjected to external hydrostatic tensile stress. Since the
influence of void interaction is not taken into consideration, the
porosity evolution function proposed by Molinari and Wright74 is
only applicable to the early stage of void growth. Even so, the pio-
neering idea of using a probability density function to represent the
variation of critical nucleation stress from site to site has been widely
adopted in subsequent work.75–81 In Sec. III A 3, we will see that the
combination of this method and the dynamic Gurson-type model is
able to describe the damage evolution process in a rather precise way.

3. Gurson-type model with dynamic correction

The studies described in Sec. III A 1 focused on the dynamic
response of a single void in an elastoplastic matrix. These are highly
conducive to investigations of the influence of different factors during
the process of void growth, but they cannot be used as a basis for
studying the macroscopic mechanical response of a material under
dynamic loading, which requires a different perspective.

Gurson69 was the first to propose approximate yield criteria and
flow rules for ductile porous materials in a micromechanics-based
framework, with the matrix material being idealized as rigid–perfectly
plastic and obeying the vonMises yield criterion. The yield function was
derived as

Φ � Σe

σ0
( )2

+ 2f cosh
3Σm

2σ0
( )− (1 + f2) � 0, (34)

where σ0 is the microscopic equivalent tensile yield stress, and Σe and
Σm are the macroscopic equivalent stress and the macroscopic mean
stress, respectively. Besides its ability to describe the progressive
failure of porous materials, the original form of the Gurson model
possesses nice properties for a variety of special conditions, such as the
zero-porosity condition, the purely deviatoric loading condition, and
the purely hydrostatic loading condition (see also Ref. 3).

Because the rigid–perfectly plastic assumption69 is too strict to be
satisfied by the majority of materials, extensions have been proposed to
study more complex constitutive behaviors and geometric configura-
tions, such as viscoplastic effects,82,83 plastic anisotropy,84–86 crystal

plasticity,87,88 and void shape effects.89 Themost importantmodification
of the Gurson model is the Gurson–Tvergaard–Needleman (GTN)
model,90–92 which provides a mixed phenomenological and
micromechanics-based framework to precisely describe the whole
fracture process of a porousmedium. The yield condition is expressed as

Φ � Σe

σe
( )2

+ 2q1f
∗ cosh

3q2Σm

2σe
( )− (1 + q3f

∗2) � 0, (35)

where σe is the microscopic equivalent tensile flow stress, which
accounts for the strain hardening effect, and f ∗ is the equivalent
porosity, which accounts for the interaction between the microscopic
shear bands and the voids.

The Gurson model has also been used to deal with the dynamic
failure of ductile materials. A Gurson-type model has been directly
applied to dynamic ductile fracture93–95 and dynamic crack
growth.96–98 Since the inertial effects are not considered in the original
form of the Gurson model, further modification is necessary for the
situation of dynamic loading.99 Similar to the original form in
Eq. (34), a dynamic correction of the Gurson model was derived by
Wang and Jiang99 based on the principle of virtual work:

Φ � Σe −Σd
e

σ0
( )2

+ 2f cosh
3
2
Σm −Σd

m

σ0
( )− (1 + f2) � 0, (36)

where Σe and Σm are the macroscopic effective and mean stresses.
Both of these can be separated into two parts, i.e., Σe � Σs

e + Σd
e and

Σm � Σs
m + Σd

e , where the superscripts s and d indicate the quasistatic
and dynamic parts, respectively. Detailed expressions for these
variables can be found in Ref. 99. An extension of this work was
proposed by Wang100 to consider rate sensitivity and thermal effects
in addition to the influence of inertia.

Although the expression for the macroscopic stress includes
both static and dynamic contributions, Molinari and Mercier101 held
the view that the definition of the macroscopic stress in previous
works99,100 was still a “static” one, i.e., the average value of the mi-
croscopic stress was given by

Σ � 1
Ω| |∫Ω

σ dV. (37)

Molinari and Mercier101 redefined the same variable as

Σ � 1
Ω| |∫Ω

σ dV + 1
Ω| |∫Ω

ρx
.. ⊗ x dV, (38)

where x
..
is the acceleration of a particle, and⊗ denotes the tensor product.

Based on the newly defined macroscopic stress, an explicit macroscopic
stress–strain-rate relationship was obtained to describe the dynamic
behavior of the porous material with a rigid viscoplastic matrix:

Σ−Σstatic � ρa2
1
5
(f−2/3 −f) _D′ +D′ ·D′ −

1
3
tr(D′ ·D′)I[ ]{

+(f−2/3 − 1) DmD′ + 1
6
(D′ : D′)I[ ]

−(f−2/3 −f−1) _DmI

+ 3f−1 −
5
2
f−2/3 −

1
2
f−2( )D2

mI}, (39)
where D is the macroscopic plastic strain rate tensor, D′ is the
deviatoric part of D, Dm is the trace of D, I is the second-order
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identity tensor, and a dot above a symbol indicates is thematerial time
derivative. The macroscopic stress in Eq. (39) is also built from two
parts: Σstatic is the viscoplastic stress tensor calculated from the
quasistatic potential (for details, see Ref. 101), and the term scaled by
ρa2 represents the dynamic contribution to the macrostress. It is
worth noting that Eq. (39) and its inverse form can be used to describe
the dynamic behavior of porous material under both kinematic and
stress control. However, there are still some limitations to this model.
First, it is restricted to cases with low porosity, since the interactions
between voids are not taken into account. Second, the spherical shape
of the void in the representative volume element (RVE) requires the
model to be used only in situations with large stress triaxiality.

Under the assumption that the deviatoric stress components are
negligible when a large hydrostatic pressure is generated in the
metallic plates during plane impact, Eq. (39) was rewritten by
Czarnota et al.75 as

p(t)−pstatic � ρ ϕ1aa
.. + ϕ2

3 _a2

2
( ), (40)

where ϕ1 � 1 − f 1/3 and ϕ2 � 1− 4
3f

1/3 + 1
3f

4/3. In the case of an
unbounded matrix (i.e., f → 0), ϕ1 � ϕ2 � 1, and Eq. (40) reduces to
Eq. (27) on replacing pstatic with pc, which means that the dynamic
contribution of the governing equation is also suitable for the early
stage of void growth, where the porosity is negligible. On this basis,
Czarnota et al.75 proposed a model that can be used to describe the
whole evolution process from nucleation to large size. The material
resistance pstatic in their model is given by

pstatic � inf(pc, p
visco), (41)

where pc is the cavitation pressure above which void nucleation
occurs, pvisco is the viscoplastic stress calculated from the plastic
potential, Eq. (35), which accounts for the loss of stress-carrying
capacity. They also derived an approximate solution of Eq. (40) for the
case of linearly increasing loading p(t) � _pt.

It should be emphasized that Eq. (40) is the governing equation
of the hollow sphere configuration. Taking the hollow sphere model
as the microscopic unit cell, different homogenization methods are
used to link the macroscopic quantities defined at the remote
boundary of the material domain to the microscopic ones defined at
the unit cell level.76,78 Czarnota et al.76 extended Eq. (40) to account
for an elastic–viscoplastic material response and implemented this
extension in ABAQUS/Explicit software to simulate plate impact
experiments, and the results reproduced experimentally measured
free-surface velocity profiles with excellent accuracy (Fig. 9). Jacques
et al.78 used a different homogenization scheme to simulate crack
growth in a notched bar and in an edge-cracked specimen. It was
revealed that the effects of micro-inertia lead to lower crack speed and
higher dynamic fracture toughness (Fig. 10).

B. Physics-based growth model

The growth models described in Sec. III A are based on tradi-
tional plastic constitutive relationships and vary from simple models
(e.g., the rigid–perfectly plastic model) to complex ones (e.g., the
thermal–mechanical coupled power-law-type rate-sensitivitymodel).
However, these models may become invalid at extreme strain rates,
i.e., ≥108/s, since there is a dramatic transition in the strain rate
dependence of the spall according to the summary presented by Reina

et al.19 (Fig. 11). Therefore, phenomenological growth models are
perhaps only applicable in the thermally activated glide regime, and a
dislocation-based viscoplasticity constitutive relation that accounts
for drag and relativistic effects is needed in the case of extreme loading
conditions.83

A dislocation-based viscoplasticitymodel applicable at very high
strain rates was first proposed by Austin andMcDowell.82 Based on J2
flow theory with isotropic hardening, the plastic deformation rate is
written as

Dp � Nmbv

σ
( )s, (42)

where Nm is the mobile dislocation density, b is the magnitude of the
Burgers vector, v is the mean dislocation velocity, s is the deviatoric
part of the Cauchy stress tensor, and σ is the von Mises equivalent
stress. Themean dislocation velocity v is a function of the shear stress,
the glide resistance of the material, and the temperature. The initial
form of v is derived as

v � L

tw + tr
, (43)

where tw is the time a dislocation spends waiting for thermal assis-
tance to overcome an obstacle, and tr � L/vr is the time for a dis-
location tomove between obstacles, with vr being themean velocity of
dislocation gliding. Taking the influence of drag and relativistic effects
into consideration, vr can be obtained as

Bvr � τeffb, (44)

where the dislocation drag coefficientB accounts for relativistic effects
and is given by

FIG. 9. Simulated free-surface velocity profiles. Two strategies of homogenization
modeling are adopted: the p-model assumes that a uniform pressure is applied to all
unit cells, while the d-model assumes that a uniform strain rate is prescribed on unit
cells. For more details, see Czarnota et al.76
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B � B0

1− (vr/cs)2, (45)

with cs being the shear wave speed. τeff � τeff(τ, τμ) is the effective
stress, which is derived from a certain form as a function of τ and τμ,
such as τeff �

������
τ2 − τ2μ

√
or τeff � τ − τμ, where τ is the applied shear

stress, τμ is the athermal threshold shear stress required to overcome
long-range resistance, which is dependent on the microstructure of
the material. For instance, for a pure fcc metal, τμ can be obtained
according to the Taylor hardening relation, i.e.,

τμ � κμb
���������
Nim +Nm

√
, (46)

where κ is the dislocation-interaction parameter, μ is the temperature-
dependent shear modulus, and Nim is the immobile dislocation

density. The evolution laws of the mobile and immobile dislocation
densities are derived as

_Nim � _Ntrap − _Nrec, (47a)

_Nm � _Nnuc + _Nmult − _Nann − _Ntrap, (47b)

where the subscripts “trap,” “rec,” “nuc,” “mult,” and “ann” refer to
dislocation trapping, recovery, nucleation, multiplication, and an-
nihilation, respectively. The physics-based evolution equations of the
terms in Eq. (47) are discussed in detail by Austin and McDowell.82

Thus, a complete constitutive relation is developed to describe the
dislocation-based viscoplasticity deformation at extreme strain rates.
Austin and McDowell’s model has been adopted to calculate the
material velocity profiles for cases when the shock amplitude is less
than 10 GPa, and the results are in good agreement with experimental
measurements (Fig. 12), which indicates the validity of their model in
the high-strain-rate regime.

Starting from the dislocation-based J2 theory of Austin and
McDowell,82 Wilkerson and Ramesh111 developed a micromechanics-
basedmodel to describe the void growth rate, taking account of the effects
of micro-inertia, dislocation kinetics, and substructure evolution. The
RVE in their work was still taken as the classical spherical shell model, in
which a spherical void of radius a is embedded in a sphere of radius r0
(with the inner and external radii of the spherical shell in the reference
configuration being denoted by A and R, respectively). Based on the
assumptions that the plastic deformation is incompressible and that the
elastic deformation rate is negligible, the strain rate of a material
element located at x � rer in the current configuration of the RVE was
derived as

_ε � a3

r3
3 _a
a
. (48)

Therefore, vr is related to the evolution of dislocation structures by
Orowan’s relation _ε � bNmvr, i.e.,

FIG. 10. J-resistance curves for the growth of a ductile crack.78,102 Results are presented
for different tractions Ta � 1100 and 1500 MPa and initial void radii a1 � 1.5 and 5 μm.78

FIG. 11. Influence of strain rate on spall strength for aluminum samples with different
purity.19,103–110 FIG. 12. Material velocity profiles for different shock stress amplitudes.82
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vr � a3

r3
3 _a

abNm
. (49)

The governing equation of void growth was derived according to the
balance of radial momentum in the current configuration as

p(t)− ∫r0

a

4
r
τ dr � ρ ϕ1aa

.. + ϕ2
3 _a2

2
( ), (50)

whereϕ1� 1− f 1/3 andϕ2 � 1− 4
3f

1/3 + 1
3f

4/3, as defined in Sec. III A 3,
andf � (a/r0)3 is the porosity. The formof Eq. (50) is consistent with
that of Eq. (40). The spatial integral on the left-hand side of Eq. (50) is
decomposed into two parts, i.e.,

∫r0

a

4
r
τ dr � Rcr + Rdd, (51)

where Rcr corresponds to the quasistatic flow strength, and Rdd is
associated with the effective stress τeff � τ − τμ, the rate dependence of
which is obtained according to Eq. (44) as

Rdd � ∫r0

a

4
r
(τ − τμ) dr � ∫r0

a

4
r

B0vr
b

1

1− (vr/cs)2 dr. (52)

Thus, the void evolution is related to the dislocation dynamics and the
structure evolution based on Eqs. (49)–(52).

It should emphasized that physics-based growth models have
undergone rapid development in the past decade.83,112–115 The use of
dislocation-based J2 theory to describe the dynamic response of
materials under extreme strain rates has been further extended to
dislocation-based crystal plasticity by Lloyd et al.112 and Luscher
et al.113 On this basis, the theory of dynamic void growth in single
crystals under extreme loading has been developed by Nguyen
et al.114,115 to describe the growth process under general loading
states, since their previous physics-based model is only suitable for a
pure hydrostatic loading state.111 Much effort has been also been
spent on modifying the description of the evolution of dislocation
substructures to obtain a closed-form approximation of the governing
differential equations, and on implementing the constitutive relation
in finite element methods to simulate experimental results.83,113–115

IV. SUMMARY AND OUTLOOK

This review has provided a summary of theoretical research on
void nucleation and growth in ductile metals under dynamic loading.
Both the macroscopic mechanical response and the microscopic
physical mechanism, as the two most important aspects, have been
investigated over the past few decades. Much theoretical works has
been done to clarify the underlying mechanisms of damage initiation
and evolution and to provide increasingly precise descriptions of
these mechanisms. However, there is still a long way to go to before a
complete framework describing ductile damage initiation under
extreme dynamic loading is established.

First, with regard to dynamic void nucleation at complex
microstructures, such as grain boundaries, grain boundary triple
junctions, and the dislocation cells, the currently available physics-
based theoretical models suffer from deficiencies arising from the
combined effects of the complex nature of the stress state and the
irregular geometric configuration. With future experiments likely to
provide more detailed information, related theoretical models are

expected to be developed and to help in investigating the laws of
evolution and the key factors involved in these process.

Second, it is important but challenging to extend the study of
traditional ductile metals to newly developed metallic materials that
have good performance and wide prospects for application, such as
nanocrystalline materials and high-entropy alloys. The processes
involved in dynamic damage of suchmaterials under high-strain-rate
loading conditions cannot straightforwardly be predicted on the basis
of existing knowledge about traditional metals, since the fundamental
damage mechanisms can be quite different. Therefore, combined
experimental, computational, and theoretical efforts are needed to
investigate themechanism of damage initiation and evolution of these
new materials.

Finally, the study of ductile damage initiation and evolution
covers spatial scales from nanometers to millimeters and temporal
scales from picoseconds to microseconds. Therefore, it is a great
challenge to establish amultiscale theoretical framework to bridge the
microscopic physical mechanism and the macroscopic mechanical
response. In addition, given the spatial and temporal resolutions
required to monitor the variation of microstructures, more advanced
experimental and simulation techniques are needed to accurately
determine the related information. Such techniques should reduce the
number of phenomenological parameters that need to be used in the
multiscale theoretical framework and thereby allow a more precise
description of the fracture process.
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